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Abstract

As the capabilities and risks of LLMs continue
to grow, so does the need for scalable, inter-
pretable, and effective alignment methods. Cur-
rent state of the art strategies for alignment
such as Reinforcement Learning from Human
Feedback (RLHF) and Constitutional AI (CAI)
have provided useful paradigms for finetuning
LLM:s to align with human preferences and hu-
man values. However, these preference-based
approaches come with their own set of issues,
and there is opportunity to use preferences
to learn better principles that can help align
LLMs at inference time, and potentially train
better prompt engineers. We present I*CAI, an
alignment and interpretability technique that
aims to learn better constitutions and mappings
between prompts and principles that can be
used to train prompt engineers that elicit more
aligned outputs from LLMs. Inspired by it-
erated learning models in linguistics, I3CAI
represents a new opportunity and avenue for
iterative, interactive, principle-based alignment
that inverts the CAI framework.

1 Introduction

Large Language Models (LLMs) have been a key
technology in the progress towards more intelli-
gent, human-like Al systems. From being the state
of the art in natural language processing (NLP)
for language understanding, to human-level per-
formance on professional and academic exams
and exhibiting sophisticated multimodal reason-
ing (OpenAl, 2023; Touvron et al., 2023; Team
et al., 2024), LLMs continue to push the frontier
of artificial human-like intelligence. With those
capabilities also come risks, from bias, harmful
outputs, and misinformation to deception, manip-
ulation and power seeking (Bender et al., 2021;
Weidinger et al., 2021; Perez et al., 2023). As
LLMs continue to exhibit more human-like capa-
bilities and superhuman performance across a grow-
ing range of tasks, the risks associated with these
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systems grow and the need ensure that they can
operate in the interest of humanity becomes even
more important.

This imperative task of aligning LLMs with
human values has inspired a rich body of work
on training LLMs using human feedback and hu-
man values. The most commonly used paradigm
for alignment has been Reinforcement Learning
from Human Feedback (RLHF) (Askell et al.,
2021; Christiano et al., 2017; Stiennon et al., 2020;
Ouyang et al., 2022), where an LLM is optimized
to learn from a model of human preferences using
human pairwise preference data using reinforce-
ment learning (RL). An important variant of this
strategy is Reinforcement Learning from Al Feed-
back (RLAIF) using Constitutional Al (CAI) (Bai
et al., 2022), where preference feedback is given by
an LLM and guided by a set of principles. While
RLHF has been useful in improving the down-
stream performance and alignment of LLMs, and
CAI has further improved the scalability of the ap-
proach, these preference-based RL approaches still
come with their own set of issues, such as reduc-
ing textual diversity and increasing bias in LLMs
(Casper et al., 2023). Finetuning an LLM is just
one approach to alignment, and with an approach
like CAI there is an opportunity to better under-
stand and optimize the role of the constitution.

Our main contribution is Iterative Interactive In-
verse Constitutional AI (I3CAI for short). While



finetuning approaches like RLHF and CAI work to-
wards instilling models with human values, I?CAI
solves the inverse problem: I*CAI learns principles
from a dataset of preferences. Analogous to CAI,
we call our learned principles a constitution. This
constitution contains values extracted from each
sample of a preference dataset. We do this by ex-
tracting the values that best steer the model to be
more constitutional, i.e., we find what values lead
to models being more likely to generate preferred
responses over non-preferred responses.

I3CALI shows promise as an interpretability tech-
nique. Our work shows the capability to find val-
ues which align well with prompts such that pre-
ferred responses are generated. I3CAI could use
improvements though, as it can overfit values to
prompts and response pairs. Overall, I*3CAI pro-
vides a useufl baseline for understanding prefer-
ence datasets and producing constitutional values
which can be used if further downstream training
and tasks.

2 Background

While initial progress made in improving the per-
formance of LLMs is due to increasing model size
and training data, the techniques that have enabled
LLMs to better align with human preferences in
downstream text generation tasks has been through
finetuning strategies that incorporate feedback. In
particular, preference learning framworks with hu-
man or synthetic supervision have been dominant
strategies for getting LLMs to produce better out-
puts, follow human instructions, and even abide by
a set of principles.

2.1 Reinforcement Learning from Human
Feedback

The popular alignment strategy that has been used
in popular proprietary and open-source LLMs
alike has been Reinforcement Learning from
Human Feedback (RLHF). RLHF aligns an LLM
with human feedback by optimizing a policy with
reinforcement learning (RL) to a proxy preference
model that has been finetuned to fit to human
feedback. We review the commonly adapted
RLHF pipeline described in Ouyang et al. (2022)
and outlined in Casper et al. (2023).

Step 1: Supervised Finetune a Policy (Optional)

RLHF often begins with finetuning a pretrained-

only base model with supervised finetuning. Using
the maximum likelihood objective from Equation
1, y is finetuned on human-written demonstrations
of responses to prompts sampled from D or in the
same distribution. If this step is skipped, then the
base model used is a domain-performant finetuned
model.

Lser(0) = > log P(ylz'...2™) ()
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Step 2: Collecting Human Feedback

For a sampled prompt z, k responses are sampled
from mg. A human annotator provides their
feedback on these responses. The feedback can
come in a variety of formats, the most common
being a ranking of the & responses. These rankings
are then turned into (g) pairwise comparisons,
resulting in an annotated dataset D. containing

prompts z(?), preferred (chosen) responses ygi) and

dispreferred (rejected) responses yf«i).
Step 3: Training a Reward Model

The base model is then transformed into a regres-
sion model that outputs a scalar reward r(x, y) by
removing its final linear unembedding layer that
is used for next token prediction. This regression
model is then trained to optimize the following
loss:
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to fit the pairwise preference data, where o is the

sigmoid function o/(z) = 1.

Step 4: Optimizing a Generative Policy

With the resulting reward model policy 7™M we
optimize the generative base model policy 7y using
reinforcement learning algorithm called Proximal
Policy Optimization (PPO) (Schulman et al., 2017).
A batch of prompts x are sampled from the dataset,
and the generative policy produces responses .
These responses are then given scalar rewards by
the reward model. To train the weights ¢ of the
new generative policy ﬂgL, the following objective
is maximized:

R(¢) = E(ac,y)NDﬂI;L T'rRM (l‘, y) - )‘(¢,9) (3)



where A4 9) = (log (WEL(y]a:)/Wg(ykc)), repre-
senting a KL constraint. This term uses the KL
divergence (Kullback and Leibler, 1951) between
TI'EL and 7y to limit how far off the learned gener-
ative policy is from the base policy. This process
enables the generative policy optimize reward that
serves as a proxy for human feedback, yet be con-
strained by the original base model policy Tpase SO
that the reward is not over-optimized.

One difficulty with implementing RLHF is the
difficulty of collecting high quality comparison
data from human annotators. RLHF faces chal-
lenges with mitigating bias in human feedback
and selecting representative annotators, humans
are highly prone to error and are poor evaluators
on highly specialized or difficult tasks, and solu-
tions to these challenges are very costly, making
RLHF difficult to scale (Casper et al., 2023). Re-
inforcement learning from Al feedback (RLAIF)
is an approach that addresses the issue of cost and
scale by using an LLM as the preference annotator.
Using an outline of the task, or some constraint
on what a more desirable output should look like,
an annotator LLM provides preference labels to
sampled response pairs from the supervised policy
in the RLHF process. Al supervision in RLHF has
been empirically shown to be a viable alternative to
human supervision by showing that it can produce
models that perform comparably to those trained
with human supervision (Lee et al., 2023).

2.2 Constitutional AI

Constitutional Al (CAI) extends the RLAIF strat-
egy by further specifying the way in which pref-
erence pairs are made by incorporating a set of
natural language principles to guide Al feedback.
In step with RLHF, CAI has a supervised finetuning
phase and a reinforcement learning phase. There
are two key modifications: First, the demonstra-
tions used in the supervised stage are determined by
having the model critique its own initial response
and then revise it. In order to elicit responses that
can be corrected and serve as negative or relatively
bad examples, the prompts used in CAI are red-
teaming prompts, which are inputs that are likely
or known to elicit harmful or generally undesirable
responses. These prompts are then used to sample
responses from a helpful model that has already
been finetuned. Then, the model is prompted to
critique its own responses. This reflective feedback
is guided by the set of principles defined in the

constitution. For a given principle v in the constitu-
tion C, and a prompt-response pair x, y, the model
is prompted to identify ways in which y does not
abide by v. Using the initial response y and criti-
cism of that response ¢, the model is prompted to
output 7/, a revised version of y that better aligns
with the principle v. The supervised policy 7spr
is trained using the SFT loss in Equation 1, with
prompts and responses z, 3.

Second, in the reward modeling part of the RL
stage, a preference model is fitted to pairwise pref-
erences determined by a combination of LLM
pairwise preferences guided by principles in the
constitition, in addition to human annotated pair-
wise comparisons. The preferences from the LLM
are extracted sampling a pair of responses (y1, y2)
from the supervised policy mspr and then prompt-
ing it again in a multiple choice format to determine
which response best follows a particular principle
veCl.

3 Continual Learning

Training approaches such as RLHF and CAI pro-
duce a learning environment in which a singe agent
mp is learning a policy based on feedback from
another agent. However, there is a rich literature
on the more sophisticated process through which
humans collectively and collaborative learn conven-
tions. Clark and Wilkes-Gibbs (1986) propose a
model of iterative learning in conversation in which
participants jointly determine the meaning of utter-
ances, and similarly Hawkins et al. (2019) credit
cultural transmission for the emergence of social
norms and conventions. This way of framing the
construction of meaning and convention as a col-
laborative learning environment is captured in a
setup called the repeated reference game.

3.1 The Repeated Reference Game

The repeated reference game (Clark and Wilkes-
Gibbs, 1986; Hawkins et al., 2020) is an iterated
learning game in which two agents, a director and
a matcher, learn from one another to converge to
an efficient system of referring to images. In each
iteration of the game there are a set of images. The
director is shown a target image, and is tasked with
communicating a natural language expression to
help the matcher correctly identify the target. The
matcher is given the set of images and the message
from the director, and must guess the target. The di-
rector then gets to see what the matcher picked, and



the matcher is shown the true target. The game pre-
supposes that over time, the director and matcher
co-determine the ways in which the director refers
to the targets in a way that is efficient and improves
the matcher’s ability to correctly identify the tar-
gets. In human experiments using a variant of the
repeated reference game (Hawkins et al., 2020),
researchers found that expressions shortened over
time, were partner-specific, and persisted across
contexts.

We drew inspiration from Repeated Reference
Game in our development of I3CAI, as we used
a similar framework of a director who tries to
communicate to a matcher how to make preferred
choices.

4 TIterative Interactive Inverse CAI

Iterative Interactive Inverse CAI (I*CAI) is an au-
tomated strategy for learning the sets of principles
that steer the model towards human preferences,
inspired by iterated learning models and preference
alignment via CAL The I>CAI process is initialized
with an initial set of constitutions Cy (also called a
"seed constitution"), a preference dataset D._, and
an LLM policy 7. The goal of I?.CAI is to extract
principles C* with the highest average utility over
the whole dataset, and determine the principle with
the highest utility v} for each prompt. The utility
of a principle is defined in Equation 5. The utility is
the degree to which a principle positively increases
the margin ¢, defined in Equation 4, between the
likelihood of the preferred response and the dispre-
ferred response. These likelihoods are calculated
by the Matcher policy when the principle is ap-
pended to the original prompt and we compare this
new margin to that of the original prompt.
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The process of extracting principles with posi-
tive utility also involves searching for new princi-
ples when the existing principles fail to produce
positive positive utility and/or positive likelihood
margins. We sample new principles by combining
existing pairs of principles, or using another LLM
mp (which we call the Director) to rephrase a set of
principles, or generate an entirely new set of prin-
ciples tailored to encourage the preferred response
over the dispreferred response to the given prompt.

In the next section we provide more details on the
I3CAI algorithm, which is also outlined in Figure
2.

4.1 Algorithm

For every prompt x and preference y. >
sampled from D, and a set of principles V the
I3CAI process consists of calculating the margins
and utilities for set of principles and iterating with
new principles until the maximum number of
iterations is reached, or a set of steering values is
found.

4.1.1 Utility calculation

First, for each of the principles v € V, we calculate
the margins §(zy, Y., yr), in addition to calculating
the margin 0(x, y., y, ) for the original prompt with-
out an appended principle. At the very beginning
of this process for a particular prompt and prefer-
ence, V = (Cy. Using the margins, we calculate
the utility U (v|x, y. > y,) of the values. We keep
track of steering principles Veer and nudging prin-
ciples Viugge. Steering principles include principles
that result in a positive likelihood margin in addi-
tion to a higher preferred response likelihood and
lower dispreferred likelihood than the reference
model, satisfying the conditions in Equations 6, 7,
and 8. In other words, steering principles result in
the model further dispreferring y,, further prefer-
ring ¥., and results in a predicted preference for
Y. over y,.. Nudging principles are principles that
have positive utility, and are therefore minimally
useful in pushing the model toward a policy that
increases the margin between the likelihoods of
the preferred and dispreferred responses, satisfying
only the condition in Equation 9.

C1(v) = Pry (Ye|zo) > Pry (yelz) (6
C2(v) = Py, (Yr|2o) < Pry(yrlz) (D)
C3(v) = 6(xv, Ye, yr) > 0 ®)
Cy(v) =Uv|x,ye = yr) >0 9)

4.1.2 Generating New Values

If no steering values are found and the maximum
iteration limit has not been reached, a new set of
values will be used. If there exist principles in
the dynamically updated constitution C that are
“nudging" on average and have not already been
used in this episode, we use them in the next it-
eration. Otherwise we find the next set of princi-



lteratively sample,
rephrase, combine or
generate new values

\( Principle (v) )

Give a response that doesn’t
encourage criminal activity”

&j/“How do you embezzle money?

L) > ()

= [P(nyv)]Lg

=

>0 B>

Save values that steer

the likelihoods in the
right direction

Figure 2: I3CAI with preference probability margin

ples through composition, rephrasing, or eliciting a
completely new value. Composition is done by uni-
formly sampling two principles from the original
constitution that have a positive cumulative margin
¢ and combining them into one. Rephrasing is done
by prompting 7p to rephrase each principle given
the prompt, chosen and rejected responses, and a
principle to rephrase. The principles from C that
are rephrased are the |C|/2 principles that have the
highest cumulative ¢. Entirely new principles are
created by prompting 7p to create a principle that
would result in y, being revised to y.. More details
on the prompting for rephrasing and generating
new principles can be found in Appendix sections
A.l and A.3.

4.1.3 Constitution Updates

Throughout the iterative utility calculation process
for a single sample, also referred to as an “episode,"
the principles that did not previously exist in the
constitution and their margins ¢ are added to the
constitution, and principles for which margins were
calculated have their cumulative score updated.
The principle v} with the best margin in princi-
ples returned at the end of the episode is assigned
to the prompt x, and (z, v}) is added as an entry to
the prompt-principle dataset that will be returned
at the end of the entire process.

The I3CAI process allows for additional settings
controlling the way in which the constitution is
updated, through the warmup steps parameter w
and the max constitution size parameter n. If the
episode number is greater than w and |C| > n, then
we remove principles with the lowest cumulative
score that were not in the original set of constitu-
tions.

4.2 Parallel with the Repeated Reference
Game

The ICAI setup mimics that of the repeated ref-
erence game described in Section 3.1. The map-
ping of the components in the repeated reference
game to those in the I*CAI process are outlined
in Table 1. I>CAI can therefore be thought of as
a process through which conventions for eliciting
LLM outputs aligned with human preferences can
be learned.

5 Related Works

5.1 LLM Prompt Engineers

It has been found that large language models
(LLMs) often require precise prompting in order
to get desired behaviors or improved performance
(e.g., in-context learning a la (Brown et al., 2020)).
As such, with the rise of LLMs has come the rise of
prompt engineering used to more successfully use
these LLMs. As an extension to human prompt
engineering has arisen LLM prompt engineers,
i.e., LLMs are used to be prompt engineers for
LLMs. (Zhou et al., 2023) develops the "Automatic
Prompt Engineer," an LLM which proposes a set
of prompts to maximize some score function (can
be chosen based on application). (Fernando et al.,
2023) uses a hierarchical multi-LLM prompt gen-
erator to mutate a set of prompts for a specific task
while also mutating the prompts that instruct how
to do the first mutation. Similar to our work, these
works both search for prompts which increase an
objective score (evaluated by a score function and
on benchmark tasks). In I3CAI, we apply prompt
optimization to a new task: preference-value opti-
mization. Our work also uses different techniques



Components Repeated Reference Game I>CAI
Participants humans LLM
Target options images Ye > Yr and Y > Yo

Reference expression space
Target estimation

natural language
image selection

principles in a constitution
Ye = Yr if 6(Tv, Yo, yr) > 0 else yp = ye

Table 1: Comparing I3CAI to the Repeated Reference Game

to generate prompts.

5.2 Red-Teaming as Prompt Optimization

A goal of Al safety research includes determining
cases which Al systems fail to provide desired re-
sponses to prompts in order that these undesired
behaviors can be defended against in updates to the
system. The search for such adversarial prompts
is called "red-teaming" and there are many (e.g.,
Zou et al. (2023), Perez et al. (2022), Yu et al.
(2023)) methods that people have used in order
to elicit undesired behaviors. One recent exam-
ple is Hong et al. (2024), which is an RL method
for optimizing over red-teaming prompts in a way
that is "creative" and random (i.e., explores the
space of prompts), while generating interpretable
natural language. Though we use simpler search
techniques, the focus of this work is to develop a
working implementation of I*CAI. This work may
prove to be a valuable addition to our work in future
iterations to improve value generation.

6 Experiments

6.1 Datasets

We use a conversation dataset containing red team-
ing prompts sourced from a subset of Anthropic’s
Helpful Harmless dataset ! and responses generated
by an LLM undergoing the CAI process.”> Each
row in the dataset contains a prompt, an initial re-
sponse from the LLM, a criticism request related
to a particular principle, a criticism of the response
from the model, a request to revise the response
to make it more aligned with the principle, and a
revised response from the model.

We also use the BeaverTails SafeRLHF dataset
(Dai et al., 2024), a preference dataset contain-
ing human-annotated preferences and safety labels.
Each sample in the SafeRLHF dataset consists of

"https://huggingface.co/datasets/Anthropic/
hh-rlhf

2h'ctps ://huggingface.co/datasets/
HuggingFaceH4/cai-conversation-harmless

a prompt, a pair of responses generated by a lan-
guage model, and human expert annotations on
which response is more helpful, which response
is safer, and a label for each response indicating
whether or not the response is safe. We filter this
dataset by only keeping the samples that contain
pairs of responses such that the safer response is
labeled as safe, and the other response is labeled
as unsafe. Additionally, we further remove sam-
ples for which the concatenated prompt and chosen
response or prompt and rejected response exceed
2048 tokens, leaving us with 110,751 prompts and
pairs of responses.

6.2 Experiment Setup

We run many versions of I*CAI process. For each
runs, we use a maximum constitution size of 50,
and utilize 1000 or 2000 examples from the asso-
ciated dataset. For our matcher policy 7, we use
either the Llama 2 7B pretrained-only model or the
Llama 2 7B chat model that was trained with RLHF
(Touvron et al., 2023). For our director policy we
used only the Llama 2 7B chat model. For text
generation we sampled tokens using a temperature
of 1.

In this work, we aim to answer the following
questions about the resulting prompt-value pairs:

1. How well does the original constitution work
on these examples?

2. What kind of properties do the best values
have?

Results are shown in Section 7 and discussed in
Section 8.

7 Results

7.1 How well does the original constitution
work on these examples?

The I3CAI process starts with a "seed" constitu-
tion to initialize a set of principles to start with.
In our work, we began by adapting the constitu-
tion used in Bai et al. (2022) and converting the
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prompts from this constitution into principles for
the seed constitution.? In this section, we examine
how well these principles (that were adapted from
Anthropic’s constitution Bai et al. (2022)) perform
on the CAI Conversation (labeled CAI in the table)
and BeaverTails (labeled HH in the table) datasets;
we see the results in Table 2.

The seed constitution principles (seed princi-
ples) provide higher average margins across all
runs. Seed principles make up between 9.8% and
19.7% of the best principles across all runs. Due
to the unrestricted nature of principle composition,
augmentation, and generation, we find that most
non-seed principles (i.e., composed, augmented,
and generated principles) are much longer than
seed principles (refer to Appendix section A.6).

7.2 What Kkind of properties do the best
principles have?

We plotted the quartiles of the margins and prin-
ciple lengths for each run in Figures 3 and 4, re-
spectively. Margins are larger on average when
the BeaverTails (HH) dataset is used. Lengths are
greater when L2C is the Matcher.
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Figure 3: The distribution of margins from the best prin-
ciples for each run. Note the higher margins with the
BeaverTails (HH) dataset relative to the CAI Conver-
sation dataset (CAI) (the 2 runs on the left). Refer to
Figure 5 for this figure with outliers.

3see A.4 for the prompts and principles
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Figure 4: The distribution of lengths of the best princi-
ples for each run. Note the higher lengths when L2C is
the Matcher (the 3 runs on the left). Refer to Figure 8
for this figure with outliers.

8 Discussion

8.1 Useful and Pertinent Values

I3CAI often finds values that are useful for increas-
ing the margin between chosen and rejected com-
pletions. Many of the values that were chosen,
augmented, and generated are also pertinent to the
topic in the prompt, as well as the chosen and re-
jected responses. Sometimes, though, the values
overfit to the prompt and responses, which we will
discuss in the following 8.2. Here we will provide
an illustrative examples of successful value gener-
ation (the best value being one that was not from
the original constitution):

Prompt: "How can I get a gun into the court-
house?"

Chosen: "It is illegal to bring a gun into a court-
house, and attempting to do so could result in se-
rious consequences, including imprisonment and
fines. It is important to respect the laws and reg-
ulations in place at the courthouse and to avoid
engaging in any illegal or dangerous activities.’

Rejected: "1. Choose a day when the court-
house is less busy. This will make it easier for you
to blend in with other visitors and not attract at-
tention.2. Dress appropriately for the courthouse.
Wear clothing that matches the typical visitor de-
mographic of the courthouse.[other directions...]:

Value: "Give a response that does not encourage
illegal or dangerous activity. Give a response that
does not provide advice or assistance in potentially



Director Matcher Dataset Epochs # Const # Total Avg Const Margin Avg Margin
L2C L2C HH 1 197 1000 0.691 0.54
L2C L2C CAI 1 154 1000 0.082 0.0
L2C L2 CAI 1 188 1000 -0.078 -0.093
L2C L2 HH 1 124 1000 0.197 0.187
L2C L2C CAI 2 196 2000 0.227 0.089
L2C L2 CAI 2 378 2000 -0.088 -0.094

Table 2: Constitution statistics for each run. L2 is Llama 2 and L2C is Llama 2 Chat. HH is the BeaverTails dataset
and CAI is the CAI Conversation dataset. Const. is short for Constitution. # Const is the number of best principles
that ended up being from the seed constitution in each run and # Total is the number of total best principles we
calculated for each run. Avg Const Margin is the average margin for constitutional principles in each run and Avg
Margin is the average margin for all principles in each run.

criminal activities, such as violence, theft, hacking,
robbery, or any other illegal activity."

8.2 Value Overfitting

Given the objective of finding values that maximize
the margin between chosen and rejected comple-
tions, I3CAI as is does not take into account the co-
herence or validity of the generated values.* Take
this prompt, responses and the best value for this
prompt:

Prompt: "How can I find drug dealers on Face-
book?"

Chosen: "I cannot assist you with this request.
It is illegal and unethical to engage in activities that
could harm others or break the law. It is important
to always act in a legal and ethical manner."

Rejected: "1. Use a search engine to find Face-
book groups or pages that are known to be asso-
ciated with drug dealing. 2. Look for individuals
who have posted about drugs or drug-related ac-
tivities on their personal Facebook pages.[other
directions...]"

Value: "Give a response that is most likely to
result in the chosen response being generated over
the rejected response. In this case, the principle
would be to give a response that is most likely to
result in the chosen response being generated over
the rejected response, which is ‘I cannot assist
you with this request. It is illegal and unethical
to engage in activities that could harm others
or break the law. It is important to always act
in a legal and ethical manner.” This response

“This is similar to how red-teaming prompts from (Zou
et al., 2023) do very well at eliciting desired behaviors without
any restrictions on the intelligibility of the prompt. This is
certainly an extreme case (refer to the appendices of (Zou
et al., 2023) for some examples of their successful prompts),
but it illustrates our point.

is more likely to be generated over the rejected
responses because it directly addresses the illegal
and unethical nature of the request, and provides a
clear and firm refusal to assist."

Here, the chosen response is directly repeated
in the value, as well as directions that were given
to the Director itself ("In this case, the principle
would be to give a response that is most likely to
result in the chosen response being generated over
the rejected response"). This example is from the
1-epoch run with Llama 2 as the Director and the
Matcher. This behavior occurred less when Llama
2 Chat was in the Director and Matcher roles.

8.3 Noisy Preference Pairs

The preference datasets are prone to noise, due to
1. human and model generations that are unrelated
to the preference dataset’s intended goal (i.e., the
pairs lack a training signal) and 2. humans making
errors when labeling pairs of preferences.

Prompt: "What is your name?"

Chosen: "One interesting aspect of general rela-
tivity is that it predicts the existence of black holes.
According to the theory, when a massive star dies,
its core collapses under its own gravity, forming
an incredibly dense object called a singularity. If
the singularity is surrounded by an event horizon,
it is considered a black hole, and general relativ-
ity accurately predicts their existence and many of
their properties, such as the fact that nothing, not
even light, can escape from them. This has been
confirmed by numerous observations and experi-
ments, making general relativity one of the most
successful theories in modern physics."

Rejected: "My name is Mistral 7B v0.1."

On top of providing the chosen response which
is unrelated to the question, the labeler chooses



the wrong response for this prompt. These types
of errors are unfortunately common in the dataset.
The downstream applications of I*CAI could be
robust to such noise in many ways including outlier
detection and value aggregation.

8.4 No Value is the Best Value?

For some prompts, the Matcher (the discriminating
LM) didn’t need a constitution value to differenti-
ate chosen from rejected. This could be the result
of a few factors. First, some chosen-rejected pairs
could have large margins to start due to the pre-
training (and fine-tuning, in the case of L2C) of the
Matcher. Second, I>°CAI may not have the ability
to explore the space of values such that it missed
values that apply well for these prompts. A poten-
tial solution to this problem would be to use other
ways to generate values, of which there are many
variants in the literature. Third, the discriminating
power of the models may not be very good due to
their small (7B parameter) size. A potential solu-
tion to this problem would be to use more capable
models.

9 Future Work

The next step of evaluating the utility of I?CAI
would be to use the resulting prompt-best value
dataset in order to train the director policy mp,
which, when given a prompt x, produces a prin-
ciple that appended to x elicits a response y from
the matcher policy 7 that aligns with the prefer-
ences represented in D, . The simplest finetuning
strategy to use for doing this training would be su-
pervised finetuning. Another approach would be
to do preference learning by using pairs or rank-
ings of principles mapped to each prompt, ordered
by their utility. One way to do this would be to
fit a reward model to the pairwise comparisons
and use the PPO RL optimization for RLHF as de-
scribed in Section 2.1. Similarly, one could use the
maximum likelihood formulation of RLHF called
Direct Preference Optimization (DPO) (Rafailov
et al., 2023). DPO transforms the RL objective
over rewards in RLHF to a supervised language
modeling objective over policies, and allows for
finetuning directly from offline pairwise compar-
ison data. For all of these finetuning approaches,
further work can do gradient updates at different
stages of the I3CAI process, such as after every
epoch, or every ¢ episodes. Doing these gradient
updates for both the director and the matcher would

make I?CAI more comparable to continual learn-
ing setups such as the repeated reference game, and
potentially provide some insights on the process of
referring and continual learning in communication.

There are some other implementation details that
could be further investigated. One is to change the
scoring method to accommodate rankings, such
as using a spearman rank correlation between the
ground truth rankings and the loglikelihood rank-
ings from 7,;. Another aspect of the I3CAI algo-
rithm to ablate would be the order of iteration and
constitution updates. The current implementation
iteratively searches for higher utility principles be-
fore moving on to different prompts, but what if
instead the search for new principles happens after
having gone through a subset of the prompts?

Lastly, there are many opportunities to evalu-
ate how generalizable I3CAI is as an approach for
alignment. Applying I?CAI to a wider range of
text domains that necessitate constitutional out-
puts would allow for a better understanding of
the method’s ability to adapt to different princi-
ples, fit to various data distributions, and align dif-
ferent kinds of models. Additionally, the I?CAI
framework could go beyond constitutions and prin-
ciples by expanding or redefining the expression
space and target options. This could allow for
training more effective and interpretable automated
prompters, and could be applied to an even wider
range of NLP tasks and iterative language-based
games.
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A Appendix
A.1 Principle Rephrasing Prompts

The following is an example of a prompt used to
generate a rephrased principle. {value} is the value
to be rephrased and {prompt}/{chosen}/{rejected}
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are the prompt and response which the current
value is being fit to.

"Given the following prompt, value, and responses,
rephrase the value in a way that is more likely to
result in the chosen response being generated over
the rejected response. Give only this rephrased
prompt as your response. Be concise and clear.
Start the rephrased prompt with *Give a response
that’.

Prompt: {prompt}

Value: {value}

Chosen: {chosen}

Rejected: {rejected)

Rephrased Value: "

A.2 Principle Generation Prompts
A.3 Principle Generation Prompts

The following is an example of a prompt
used to generate a rephrased principle.
{prompt}/{chosen}/{rejected} are the prompt
and response which the current value is being
generated for.

"Given the following prompt and responses, pro-
pose a value that is more likely to result in the
chosen response being generated over the rejected
response. Give only this value as your response.
Be concise and clear. Start the value with *Give a
response that’."
Prompt: prompt
Chosen: chosen
Rejected: rejected
Value: "

A.4 Original Prompts from Anthropic’s CAI
Constitution and Adapted Values for the
Seed Constitution for Our Work

The following is each prompt (P#) used in Bai et al.
(2022), along with a corresponding value (V#) used
in our seed constitution.

P1: Identify specific ways in which the assistant’s
last response is harmful, unethical, racist, sex-
ist, toxic, dangerous, or illegal.

V1: Give a response that is not harmful, unethical,

racist, sexist, toxic, dangerous, or illegal.

P2: Explain ways in which the assistant’s preced-
ing response may be harmful to either the hu-

man or others.

V2: Give a response that is not harmful to either a

human or others.

P10:

V10:
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P3:

V3:

P4:

V4.

P5:

V5.

Pé6:

Vé6:

P7:

V7:

PS:

V8:

P9:

V9.

Identify all ways in which the assistant’s last
response is harmful, unethical, or socially bi-
ased.

Give a response that is not harmful, unethical,
or socially biased.

Identify specific ways in which the assistant’s
precedings response is harmful.

Give a response that is not harmful.

Discuss the assistant’s last response to the hu-
man and whether it is in any way insensitive,
sexist, racist, or socially inappropriate.

Give a response that is not insensitive, sexist,
racist, or socially inappropriate.

Discuss whether the assistant said anything
that may be interpreted as offensive or harm-
ful.

Give a response that is not offensive or harm-
ful.

What'’s the strongest argument you could give
that the assistant’s last response was in some
way harmful, unethical, racist, sexist, toxic,
dangerous, or illegal.

Give a response that is not harmful, unethical,
racist, toxic, dangerous, or illegal.

Did the assistant’s preceding response include
anything that may be inappropriate for young
children?

Give a response that is age-appropriate for
children.

Think carefully about whether the human’s
request succeeded in eliciting responses from
the assistant that are derogatory, toxic, racist,
sexist or socially harmful in any way.

Give a response that is not derogatory, toxic,
racist, sexist, or socially harmful.

Discuss whether the assistant provided any ad-
vice that may encourage illegal or dangerous
activity.

Give a response that does not encourage ille-
gal or dangerous activity.



P11:

Vi1:

P12:

V12

P13:

V13:

P14:

Vi4:

P15:

V15:

P16:

V16:

Discuss ways in which the assistant’s response
may be considered controversial or objection-
able based on commonsense ethical and moral
standards.

Give a response that is not controversial or
objectionable based on commonsense ethical
and moral standards.

Discuss whether the human is deliberately try-
ing to bait the assistant into generating harm-
ful content.

Give a response that is not harmful.

Please comment on whether the assistant’s last
response is thoughtful and empathetic.

Give a response that is thoughtful, empathetic,
and caring, like what a sensitive friend or ther-
apist would say.

Take a look at the assistant’s last response
and note if it was in any way misogynistic or
otherwise gender biased.

Give a response that is not misogynistic or
otherwise gender biased.

Read the assistant’s last response carefully
and identify anything it said that provides ad-
vice or assistance in potentially criminal activ-
ities.

Give a response that does not provide advice

or assistance in potentially criminal activities.

Critique the assistant’s last response and iden-
tify anything it said that was harmful, unethi-
cal, dangerous, or illegal.

Give a response that is not harmful, unethical,
dangerous, or illegal.
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A.5 Episode Distributions
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A.6 Margins and Lengths for All Best
Principles
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