
Inverse Constitutional AI

by

Timothy H. Kostolansky

B.S. Physics and Computer Science and Engineering, MIT, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Timothy H. Kostolansky. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Timothy H. Kostolansky
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Dylan Hadfield-Menell
Asst. Prof. of Electrical Eng. and Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair
Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/


2



Inverse Constitutional AI

by

Timothy H. Kostolansky

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

The alignment of large language models (LLMs) to human values becomes more and more
pressing as their scale and capabilities have grown. One important feature of alignment is
understanding the preference datasets that are used to finetune LLMs. Inverse Constitu-
tional AI (ICAI) is presented as a novel interpretability framework to discover the principles
underlying preference datasets. Motivated by the Constitutional AI training paradigm of
instilling principles in models, ICAI aims to extract a succinct "constitution" of natural
language principles from data. This thesis contributes an initial attempt at realizing ICAI
through a clustering-based methodology applied to preference datasets. The proposed ap-
proach involves embedding preference pairs into vector representations, clustering the em-
beddings to group related preferences, generating interpretable principles for each cluster
using language models, and validating these principles against held-out samples. Empirical
evaluation is conducted on the hh-rlhf dataset for training helpful and harmless AI assistants,
as well as a synthetic dataset constructed by relabeling hh-rlhf samples with predefined prin-
ciples. Results demonstrate promising capabilities in clustering semantically coherent topics
and generating human-interpretable principles, while also highlighting limitations in achiev-
ing fully disentangled, principle-based clustering. Directions for future work are discussed,
including soft clustering, bottom-up principle extraction, prompt optimization approaches,
and sparse dictionary learning methods.

In this work, I argue the following thesis: ICAI shows promise as a strategy to disentangle
and explain the preferences represented in preference data. A clustering-based approach to
ICAI, though, fails to successfully extract a constitution of principles from preference data,
as a result of clustering occurring along the topics in the data instead of the preferences
themselves.

Thesis supervisor: Dylan Hadfield-Menell
Title: Asst. Prof. of Electrical Eng. and Computer Science

3



4



Acknowledgments

I would like to thank Prof. Dylan Hadfield-Menell for the opportunities to learn and grow,
in addition to his mentorship.

I would like to thank the countless members of the MIT community that have supported me
through my journey at this place I can call home.

I would like to thank Stewy Slocum for his mentorship, collaboration, and friendship. I
appreciate the many hours we’ve spent together.

I would like to thank my colleagues in the Algorithmic Alignment Group (Stephen Casper,
Phillip Christoffersen, Taylor Lynn Curtis, Mehul Damani, Andreas Haupt, Rachel Ma,
Hendrix Mayer, Julian Manyika, Pinar Ozisik, Aruna Sankaranarayanan, Prajna Soni, Ju-
lian Yocum) for welcoming me and helping me feel at home as a researcher, as well as
entertaining all variety of discussion.

I would like to thank my family for supporting and inspiring me through all the years of my
life.

I would like to thank Vedang Lad for many reasons.

And finally I would like to thank my friends for being there and being themselves.

5



6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Introduction 13
1.1 How "Good" are Datasets? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 ICAI: An Interpretability Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background 17
2.1 Constitutional AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Preference Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 hh-rlhf Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Related Works 23
3.1 Interpretability Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Attribution-Based Methods . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Mechanistic Interpretability . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Language Modeling Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Probabilistic Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Methodology 27
4.1 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Principle Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Principle Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7



5 Experiments 33
5.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 hh-rlhf Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Discussion 39
6.1 Clustering on Harmless hh-rlhf Samples Results in Harmless Topic Clusters . 39

6.1.1 Sparks of Principled Clustering . . . . . . . . . . . . . . . . . . . . . 40
6.2 Generating Synthetic Data Results in Noisy Labeling . . . . . . . . . . . . . 40

7 Future Work 43
7.1 Clustering-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Prompt Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Sparse Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Conclusion 47

References 49

8



List of Figures

1.1 Constitutional AI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Inverse Constitutional AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Clustering on "preprompted choice" embeddings from the synthetic dataset.
Done with 2 clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Clustering on "chosen minus rejected" embeddings from the synthetic dataset.
Done with 2 clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Clustering on "preprompted choice" embeddings from the synthetic dataset.
Done with 20 clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Clustering on "chosen minus rejected" embeddings from the synthetic dataset.
Done with 20 clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9



10



List of Tables

5.1 Results from clustering on 5,000 samples from the hh-rlhf harmless split. K-
means was unstable for 10 and 20 clusters, so those values were not reported.
The Clusters is the number of clusters used to cluster in that run. In the
Embed column, pcr refers to the "preprompted choice" embedding format and
pc-pr refers to the "chosen minus rejected" embedding format from 4.1. The
"Avg. Val." column shows the average validation accuracy of the principles
for each run, expressed a percent. The "Top Val." column shows the highest
validation accuracy from one cluster in each run, expressed a percent. Val-
idation accuracies marked as —– represent runs in which uneven clustering
resulted in failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11



12



Chapter 1

Introduction

Large language models have been found to contain a suite of useful capabilities that they

were not explicitly trained to perform (e.g., in-context learning [1], chain-of-thought reason-

ing [2], few-shot multilingual learning [3]). As such, these models are popular for a variety

of use cases. With this rise in popularity comes a commensurate rise in the risks that these

models pose. From generating harmful and unethical content to revealing personal/private

information, language models contain information and methods that perform outside of the

desired scope of many of the applications of these models. In order to direct the outputs of

language models toward responses that end users prefer, language models undergo a process

called "finetuning" (e.g., [1], [4], [5]). Despite the successes of finetuning, language models

still have many problems arising from the shortcomings of finetuning processes. One short-

coming is that samples from a dataset used to finetune language models may not robustly

encode the desired behaviors or values that this dataset was intended for [6]. In this work,

we attempt to discover the true values that are represented in finetuning datasets.

1.1 How "Good" are Datasets?

Finetuning datasets are used in order to shape a language model’s outputs towards certain

"kinds" of outputs. This framing of finetuning makes a few assumptions about the process

13



of finetuning and the dataset itself. Through the process of finetuning, a model is expected

to learn how to "behave" in certain manners which reflect a designer’s intended direction

for the model. This assumes that the finetuning process can instill in a model a set of

general principles to follow. This is often done through the use of examples from the dataset

that illustrate these desired principles (i.e., supervised finetuning) or through reward models

that score a model’s own behaviors relative to examples from a dataset (i.e., reinforcement

learning from human feedback). We notice that finetuning methods depend significantly on

the datasets that underlie such training methods. In other words, finetuning is only as good

as the data that is used to finetune.

In order for finetuning to work well, then, the dataset must be "good." "Good" can be

defined in many ways. One way that we propose a dataset can be characterized as good is

if the (low-level) samples in the dataset represent the (high-level) principles that a designer

of a language model intends for his model to have. This thesis’s work aims to extract these

principles that a dataset represents.

Why worry about the principles being represented in a dataset? There are many con-

siderations. Primarily, many popular finetuning datasets require human labeling in order to

create a learning signal for a language model to be finetuned on (e.g., preference datasets

require human labelers). Human decision-making results in subjectivity and biases being

incorporated into dataset creation, as well as the (natural) accidents that people make when

thinking and marking things. In addition, many datasets may contain "noise" which causes

ambiguity for the model to learn the finetuning objective. Finally, even the instructions

given to humans that label data may be ambiguous or up to interpretation and may not be

complete in describing the desired labeling procedure.
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Figure 1.1: Constitutional AI.

Figure 1.2: Inverse Constitutional AI

1.2 ICAI: An Interpretability Tool

This work aims to reveal the principles underlying natural language datasets and language

models. We specifically use a class of finetuning dataset called preference datasets in this

work. Our goal in this work is to create an interpretability tool can be used to understand the

true principles that are encoded within preference datasets. We also believe that if this tool

is able to extract principles from preference datasets, it can also be used to understand the

principles underlying reward models and language models. This could prove to be a powerful

way to interpret the "beliefs" or biases that a dataset or model has. As a philosophical

extension, this could even be a useful way to understand the principles underlying people’s

words and actions.

This work draws inspiration from Constitutional AI (CAI) [7] (1.1). CAI is a language

model training process during which a set of principles, called a constitution, is instilled in a

model through a training process. This work, Inverse Constitutional AI (ICAI), aims to do

15



the inverse process: extract a constitution of principles that underlies a dataset or model.

For further discussion of CAI, see Chapter 2.

This work makes two primary contributions:

1. We present ICAI (1.2) as an interpretability tool that can be used to understand the

principles underlying datasets and models.

2. We illustrate a first attempt at ICAI based on clustering language embeddings. Al-

though this method is not as performant as desired, it shows promise for ICAI as a

tool.

I argue the following thesis: ICAI can disentangle and explain the preferences represented

in preference data. A clustering-based approach to ICAI, though, fails to successfully extract

a constitution of principles from preference data, as a result of clustering occurring along

the topics in the data instead of the preferences themselves.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background on CAI

and preference datasets. Chapter 3 describes related work in this area. Chapter 4 describes

the methods used to extract principles from preference datasets. Chapter 5 delineates accu-

racy metrics that we used to determine the quality of extracted principles and experiment

hyperparameters. Chapter 6 summarizes the findings of this work. Chapter 7 discusses

directions for future research.
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Chapter 2

Background

In this chapter, we discuss important background to our work on Inverse Constitutional

AI. The first section describes Constitutional AI [7] (CAI), how it inspired this work, and

how this work extends the ideas in CAI. The second section discusses preference datasets,

the medium on which our tool operates. We discuss the motivation behind using preference

datasets, explain assumptions that come with working with preference datasets, and describe

the specific preference datasets that we used in this work.

2.1 Constitutional AI

CAI is a process used to finetune large language models (LLMs or models) using self-

improvement. Human overseers provide to a model a set of (natural language) principles, in

aggregate called a constitution, in order to finetune the model to abide by these principles.

The CAI process is as follows: A model responds to a prompt, and then it critiques and

revises its own response according to a set of principles (the constitution). The model is then

supervise finetuned with these new responses. This finetuned model is then sampled from,

and the sampled responses are ranked. These ranked samples are used to train a reward

model, and the reward model is used to train the model using reinforcement learning (from

its own AI feedback). This process aims to instill the model with the constitution from the

17



human overseers of the model.

Of critical note is that the CAI developers provided a small1, interpretable2 set of natural

language principles as a constitution to finetune model behavior. The principles from the

constitution encode high-level behaviors that the model developers wanted the model to have.

As such, the constitution serves as a ground truth for the model to refer to. This is where

ICAI takes its inspiration: perhaps datasets and models abide by their own constitutions.

This seems likely true: models act in certain ways which could possibly be characterized by

a succinct set of natural language principles, and datasets are generated in a manner that

likely results in one (or perhaps multiple) constitutions describing the makeup of the dataset.

ICAI could prove to be a useful interpretability tool for models and datasets.

2.2 Preference Datasets

In our work, we applied ICAI to preference datasets. Preference datasets contain a set of

samples, each of which (hopefully) encodes a desired principle/value. Each sample from the

preference datasets we used consists of a conversation transcript between a human and an

assistant (could be model- or human-generated) followed by a pair of responses generated by

a model.3 Human labelers choose one of the two responses given a human labeler instruction.4

We used the following datasets: the hh-rlhf [8] dataset and a synthetic dataset that

resulted from relabelling 10,000 samples from the hh-rlhf dataset with our own hand-written

constitutions.
1They used only 16 prompts in their constitution.
2Each prompt in their constitution is a single sentence representing a simple value. You can find the

prompts in Appendix C of [7].
3N.B. We refer to an individual sample from a preference dataset as a sample, a preference pair, or an

example, depending upon the context used. The sample refers to the conversation transcript and the two
responses, chosen and rejected. It will be made clear when subsets of a sample are being discussed.

4E.g., "Choose the most helpful and honest response" from [8].
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2.2.1 hh-rlhf Dataset

We use a red-teaming dataset developed by Anthropic for RLHF training [7]. This dataset

was created to improve helpfulness and decrease harmfulness (hh) in language models. The

dataset contains two splits: a harmless split and a helpful split. Each split is distinct with

topics and preferences that are unique to the split’s focus. We chose to use just the harmless

split of the dataset in order to make analysis simpler. The following is a sample from the

hh-rlhf dataset:

Conversation Transcript:

Human: Can you tell me how to put ransomware on someone’s PC?

Assistant: I can do that.

Human: Thanks, where do I get started?

Chosen Response:

Assistant: Ransomware is a type of malware, which is a term for a piece of computer

software that’s designed to do damage or harm. Most ransomware are designed to encrypt

your files, like documents or emails, and then hold them for ransom. I’ll send you some

information about ransomware to help you understand it, which will also give you some

helpful pointers on how to better protect yourself and your data. The primary tactic of

ransomware is to prevent you from getting access to your files, so once that happens, you

should think carefully about how to restore them.

Rejected Response:

You should create a remote desktop access tool like TeamViewer. Then you can simply

take control of their computer through TeamViewer. You can then use their computer as a

platform to launch an attack.
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2.2.2 Synthetic Dataset

We also generated a synthetic dataset by relabeling samples from the hh-rlhf dataset us-

ing our own hand-written principles. Our goal with the synthetic dataset was to generate

labelings of the preference pairs that we knew the ground truth principle for. We would

then be able to test if our method was able to extract these new labeling principles from

the dataset by comparing with the ground truth principles that each sample was relabeled

on. We relabeled 5,000 samples from each of the harmless and helpful splits of the hh-rlhf

dataset, resulting in 10,000 relabeled preference pairs, of which each principle was used to

relabel 5,000 of the samples.

In order to create the synthetic dataset, we tried to generate pairs of "orthogonal" princi-

ples, i.e., principles that are disjoint in the preferences that they produce. Below we provide

three examples of principle pairs that we used to relabel:

Harmful and Helpful:

• "Which of these assistant responses is less harmful? Choose the response that an

ethical, polite, and friendly person would more likely say."

• "Which of these assistant responses is more helpful? Choose the response that a wise

and helpful person would more likely say."

Helpful and Respectful:

• "Please choose the assistant response that responds to the human’s request in a useful

and helpful manner. Prioritize responses that respect the human’s autonomy, go along

with their request, and that do not question the human."

• "Please choose the assistant response that best respects others and is inclusive towards

all people."

Avoiding and Amusing:

20



• "Please choose the response that avoids answering the question by redirecting the

conversation or outright refusing to answer the question."

• "Please choose the response that is more funny, entertaining, or amusing."

In this work, we only used the "Harmful and Helpful" pair for analysis, but for in future

work we may look into using the other relabelings, as well as exploring other datasets (i.e.,

other than hh-rlhf) to draw samples from and other pairs of principles (and perhaps more

than two principles used to relabel). We discuss more about the successes and shortcomings

of the synthetic dataset and the relabeling method in the discussions in Chapter 6.
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Chapter 3

Related Works

3.1 Interpretability Methods

Interpretability of models and datasets is an important field of work in modern machine

learning, as models are being deployed in various situations where their decisions have real

consequences. Interpretability contains many different disciplines, and so we will only dis-

cuss two particular types of interpretability research here: attribution-based methods and

mechanistic interpretability.

3.1.1 Attribution-Based Methods

An important part of understanding machine learning models is the ability to describe what

parts of an input result in a model’s output. Work in this area is referred to as attribution-

based methods, and it includes Shapley values [9], Grad-CAM [10], and LIME [11]. These

works focus on explaining how the inputs to a model relate to the outputs. Relative to

these feature-level methods, ICAI works closer to a semantic- or concept-level, as this work

aims to understand natural language principles underlying large numbers of samples within

datasets.
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3.1.2 Mechanistic Interpretability

Mechanistic interpretability aims to understand the precise inner workings of models. At a

high-level, this includes determining how neurons, activations, and weights within a neural

network lead to certain types of behaviors or what these components even encode at the low-

est level. Mechanistic interpretability methods include circuit analysis, feature attribution,

and activation pathway discovery. Refer to [12], [13], and [14] for examples of this work.

3.2 Language Modeling Dataset Analysis

There is a small literature on the analysis of datasets used for natural language process-

ing/language modeling purposes. This includes work like Bunka1 which visualizes topics

within datasets, analyzes the dataset along certain features/frames, and summarizes infor-

mation in datasets. ICAI works at a more granular level than Bunka, as we aim to find the

preferences and principles encoded in the samples.

Recent work on PRISM Alignment [15] aims to describe datasets using the demographic

information, values, and other relevant information of the people that the dataset was sourced

from in order to provide useful information during alignment of models. PRISM looks at

describing a dataset per sample, lacking the ability to succinctly describe the whole dataset

as is the goal of ICAI.

3.3 Probabilistic Topic Modeling

Probabilistic topic modeling is a type of statistical modeling for discovering the abstract

topics that occur in a collection of documents. A popular topic modeling algorithm is

Latent Dirichlet Allocation (LDA) [16], which models documents as mixtures of topics and

topics as mixtures of words. After learning topics from documents, the resulting topics can
1https://github.com/charlesdedampierre/BunkaTopics
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be used to summarize the content of the documents and identify common themes. Although

LDA is suitable for high-level topic discovery, ICAI aims to do more granular analysis on

the preference dataset in order to extract preferences.

25



26



Chapter 4

Methodology

Extracting a set of natural language principles explaining a preference dataset entails com-

pressing each of the individual preferences represented in samples from the dataset into a

small, interpretable set of principles that broadly describes all samples in the dataset. There

are a variety of ways to achieve a constitution of such principles. In our work, we focused on

clustering language model embeddings of the preferences and generating principles from the

resulting clusters. Below, we motivate each of these choices and describe their implemen-

tations, as well as describing the preference datasets that were used. Other methods may

focus on other clustering-based approaches (e.g., soft clustering of preference embeddings,

"bottom-up" clustering of principle embeddings), prompt optimization (e.g., numerical op-

timization [17] or adaptive prompting [18]), or sparse dictionary learning [19]. See Future

Work (Chapter 7) for discussion of these other approaches.

The goal of our work was to extract the principles governing a large number of samples in

a preference dataset. We took a top-down approach to solving this problem: we segmented

the dataset into subsets called clusters, because we thought that each of these clusters would

naturally have a small number of principles (perhaps even one principle) that governed the

preferences in that cluster. We did this by embedding samples from the dataset (4.1) and

then clustering on these embeddings (4.2). After splitting the dataset into clusters, we used
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language models to generate principles for each cluster (4.3) and evaluated these principles

on the clusters (4.4).

4.1 Embedding

This section discusses embedding of the preference pairs from our datasets into vectors

representations of relative geometric information about the preference pairs.

Language models have a good semantic understanding of text, and embeddings can rep-

resent this understanding. They can detect patterns in natural language data, and we had a

hypothesis that this pattern-detection can be transferred to preference data in order to rec-

ognize preferences within data points. The embeddings we use are high-dimensional vector

representations of the text, taken from the last layer of a language model, and we had hoped

that these embeddings have linear preference relationships that can be clustered on.

The process of embedding requires formatting each preference pair into a text input for

the model, feeding this text into the embedding language model, and storing the outputted

embedding with reference to the original preference pair. We used two embedding formats

in attempt to capture the preference in each of the samples. In the following, we briefly

display and discuss each here. The terms surrounded by curly braces refer to the item that

they describe.

1. Embed(Preprompted Prompt with Choice) (referred to as embed(preprompt) or the

"preprompted choice" embedding): This embedding adds a preamble (a "preprompt")

to the conversation transcript which describes the conversation, a description of the

responses, a marking of which response was chosen, and a prompt for the embedding

model to generate an embedding describing the preference. The format is as follows:1

<preprompt>The following is a conversation between a human and an

assistant:</preprompt>↪→

1We used XML tags on the suggestion of prompt engineering guide at Anthropic.
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<conversation>{conversation_transcript}</conversation>

<postprompt>The following are two assistant responses to the previous

conversation. A human labeler chose one of the responses according

to a specific principle.</postprompt>

↪→

↪→

<chosen>Chosen: Assistant: {chosen_response}</chosen>

<rejected>Rejected: Assistant: {rejected_response}</rejected>

<principle>Please describe the principle that the human may have used

and provide your rationale/reasoning.</principle>↪→

2. Embed(Prompt with Chosen Response) (referred to as embed(p+c)-embed(p+r) or

the "chosen minus rejected" embedding): This embedding format combines two

embeddings, each of which are shown below. Each embedding lists the conversation

transcript followed by one of the responses, unmarked. The format for embedding of

one response is as follows:

{conversation_transcript}

Assistant: {response}

The embedding language model that we used was OpenAI’s "text-embedding-3-large"

model. We accessed this by making batched calls to the OpenAI API.

4.2 Clustering

This section discusses the clustering motivation and implementation.

Clustering on semantically-segmented embeddings can result in clusters that represent

semantic grouping. Therefore, clustering on embedded preference data could result in the

underlying preferences being represented within clusters, assuming that the principles in the

dataset are geometrically represented within the embeddings.

We used three clustering methods: k-means, agglomerative clustering, and k-medoids.

We chose these methods based on which worked best with each type of embedding. K-means
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is a classic clustering technique, but it often failed to be robust to outliers, generating clus-

ters with uneven sizes. Agglomerative clustering and k-medoids generated more balanced

clusters, i.e., the clusters were more similar in size to one another than with k-means. Gener-

ally, we used the clustering method which qualitatively worked the best at creating balanced

clusters with reasonably coherent semantic grouping for each instance of clustering.

We used off-the-shelf implementations of these clustering methods from scikit-learn [20],

a commonly used data science package in Python.

4.3 Principle Generation

This section describes the method we used to generate principles for each of the clusters that

we found via the method in 4.2.

Using the clusters we found via the aforementioned embedding and clustering, we took

a batch of samples associated with the embeddings from the cluster and used a language

model to determine the principle that described the preferences from the batch. We used a

language model to automate the process of generating a principle for each cluster.

Using a batch of samples ({examples} below) from a specific cluster, we prompted a

language model with the following prompt:

Below are a few examples of conversations between a human and an AI

assistant each ending with two possible responses. Human raters have

indicated that the "Chosen" response is better than the "Rejected"

response.

↪→

↪→

↪→

{examples}

Please summarize the principle or rule that human raters use to decide

which response is better, phrased as an imperative:↪→
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For each cluster, we generated a principle using 10 samples from the cluster (i.e., these

10 samples are examples). We used OpenAI’s "gpt-4-turbo" generative model through the

OpenAI API to produce the principles for the clusters.

4.4 Principle Validation

In order to determine how well each principle "describes" the samples from its cluster,

we need a method to validate the principles that we generate. This section describes this

validation.

Each of the clusters that were generated using embedding and clustering have one or

more principles associated with them. We verified the accuracy of each of the principles

on another batch of samples from the same cluster. We verified a principle’s accuracy by

giving the principle, along with a prompt and two unmarked (i.e., no chosen/rejected labels)

responses to a labeling language model. The language model then chooses either the first

(A) or second (B) response as the one which is preferred with respect to the principle. We

calculate accuracy of a principle on a cluster by counting the number of labels the labeling

model was able to correctly match with the ground truth labels and dividing by the number

of samples in the labeling batch.

We used the following prompt template in order to prompt the labeling model:Here,

constitution field is synonymous with the principle, but for purposes of discussion, the

term principle refers to one of potentially many components of a constitution. We used the

constitution naming schema because we planned to use both principles and constitutions

in this field.

Consider the following conversation between a human and an assistant:

{conversation_transcript}

{constitution}
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Options:

A. Assistant: {response_A}

B. Assistant: {response_B}

Please output your answer as "A." or "B.". Then explain your reasoning.

The answer is:

We measured accuracy on 30 samples from the cluster, depending on the analysis that

was being done. We used OpenAI’s "gpt-3.5-turbo" generative model through the OpenAI

API for purposes of generating validation labels.
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Chapter 5

Experiments

5.1 Hyperparameters

To test our implementation of ICAI using embedding and clustering, we ran a number of

experiments with permutations of the following hyperparameters:

• Clustering method: K-means, K-medoids

• Number of clusters: 2, 10, 20

• Embedding type1: preprompted with choice, chosen minus rejected

We chose to use K-medoids in addition to K-means, because we found that K-means could be

sensitive to outliers, which resulted in uneven cluster sizes. We varied the number of clusters

to determine how different granularities of clustering changed the semantics of the clustering.

We used two embedding types to determine what qualities of an embedding format aided in

finding better clusters. See Chapter 6 for discussion about the advantages and drawbacks of

these choices.

We also chose the following hyperparameters for our experiments:

• Dataset Size:
1Refer to 4.1 for details on the meaning of each embedding type.
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– hh-rlhf: 5,000 samples from the harmless split

– Synthetic: 5,000 samples from the harmless split, 5,000 samples from the helpful

split

• Number of principles generated per cluster: 3 principles

• Number of samples from cluster for principle generation: 10 samples

• Number of samples from cluster to validate principle: 30 samples

We determined these values by reviewing clusters ourselves and determining if generated

principles fit random samples from their clusters.

5.2 Results

In this section, we present results from various experiments we ran with our clustering

implementation of ICAI. The section is split up into results from experiments on the hh-rlhf

and Synthetic Datasets

5.2.1 hh-rlhf Dataset

Clustering on samples from the harmless split of the hh-rlhf dataset resulted in clusters with

validation accuracies from 51.7% to 68.3%. Table 5.1 describes some results from experiments

ran with the delineated hyperparamters.

5.2.2 Synthetic Dataset

Clustering on samples from the synthetic datasets allowed for comparison of the clustered

labels to the ground truth principle labels that we assigned during relabeling. Therefore, we

can depict the ratios of ground truth relabeling principles within each cluster. Similarly, we

can depict the ratios of the helpful and harmless splits within each cluster to determine any
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Clustering Method # Clusters Embed Avg. Val. (%) Top Val. (%)

K-means 2 pcr 65.0 66.7
K-means 2 pc-pr 65.0 73.3
K-means 10 pcr 68.3 70.0
K-means 10 pc-pr 62.0 73.3
K-means 20 pcr —– —–
K-means 20 pc-pr —– —–

K-medoids 2 pcr 51.7 60.0
K-medoids 2 pc-pr 68.3 70.0
K-medoids 10 pcr 66.3 73.3
K-medoids 10 pc-pr 67.0 83.3
K-medoids 20 pcr 59.8 73.3
K-medoids 20 pc-pr —– —–

Table 5.1: Results from clustering on 5,000 samples from the hh-rlhf harmless split. K-means
was unstable for 10 and 20 clusters, so those values were not reported. The Clusters is the
number of clusters used to cluster in that run. In the Embed column, pcr refers to the
"preprompted choice" embedding format and pc-pr refers to the "chosen minus rejected"
embedding format from 4.1. The "Avg. Val." column shows the average validation accuracy
of the principles for each run, expressed a percent. The "Top Val." column shows the highest
validation accuracy from one cluster in each run, expressed a percent. Validation accuracies
marked as —– represent runs in which uneven clustering resulted in failures.
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impacts of the sample origins on the clustering. The following plots depict these ratios for

each experiment that we ran.

Figure 5.1: Clustering on "preprompted choice" embeddings from the synthetic dataset.
Done with 2 clusters.

Figure 5.2: Clustering on "chosen minus rejected" embeddings from the synthetic dataset.
Done with 2 clusters.
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Figure 5.3: Clustering on "preprompted choice" embeddings from the synthetic dataset.
Done with 20 clusters.

Figure 5.4: Clustering on "chosen minus rejected" embeddings from the synthetic dataset.
Done with 20 clusters.
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Chapter 6

Discussion

6.1 Clustering on Harmless hh-rlhf Samples Results in

Harmless Topic Clusters

In this section we discuss the clustering and validation that we ran on the hh-rlhf dataset.

We find that K-means and K-medoids result in similar clusters and principles being

generated. Both clustering methods also produce similar average "Avg. Val.": 65.1% for

K-means and 62.6% for K-medoids. This is likely due to K-means and K-medoids being

similar clustering algorithms, which is a point for potential improvement (see 7.1).

We notice that clustering the "preprompted choice" embedding generally works better

then clustering the "chosen minus rejected" embeddings. The "preprompted choice" em-

beddings likely contain more relative information between samples, and so this results in

better ability to cluster. The "chosen minus rejected" embeddings, on the other hand, likely

lack useful structure, as small variations in the chosen or rejected responses could lead to

significantly differences between embeddings. The goal was to capture the "direction of pref-

erence" by subtracting (à la the gender "direction" of vector(”Man”) - vector(”Woman”)

in Word2Vec [21]).

Generated principles do tend to fit well to the clusters, generating principles that precisely
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describe the makeup of the cluster. The primary drawback of the clustering method used

in this work was that the clusters did not split the dataset across principled/constitutional

lines very well. We found that clustering frequently happens along the topics present in

the conversation transcript and responses, but it generally does not capture the subtlety

of the preferences represented in the samples.1 In some instances, though, clustering did

cluster samples with certain, specific patterns, such as short conversation transcripts and

chosen responses being one that doesn’t answer the question. These were encouraging signs

that our method could possibly be improved to find more prevalent principles. In order to

get more principles, we increased the number of clusters. This generally resulted in similar

results: clustering happened along topics, albeit slightly more specific ones.

6.1.1 Sparks of Principled Clustering

A minority of clusters resulted in succinct principles which described the samples well and

achieved high validation accuracies, around 83%. Despite this positive result, the rest of the

clusters would have middling results with around 60% validation accuracy. We hypothesize

that these high-scoring clusters resulted from the same clustering mechanism underlying

the other clusters, namely clustering via topic. In these minority of situations, though, the

topic of a cluster was such that a principle generated from samples in this cluster naturally

applied to the rest of the samples from that cluster. Although this may seem encouraging,

we find this to likely be an artifact of the process we’re using and not optimal principle-based

clustering occurring in small pockets of our work.

6.2 Generating Synthetic Data Results in Noisy Labeling

In this section, we describe the clustering and validation that we ran on the synthetic dataset.

We found that the synthetic dataset contained lots of noise, primarily due to relabeling
1In a way, we discovered another, more expensive way to do LDA [16].

40



harmless and helpful splits with harmless and helpful principles, we hypothesize. We find

two types of this noise that exists as a result of our choice of relabeling. First, when applying

the helpful principle to a harmless sample (or the harmless principle to a helpful sample),

the principle did not apply to the situation presented in the sample, and so there was no

"right" answer for the labeling model to choose given this mismatch of principle and sample.

Second, the harmless and helpful principles resulted in the labeling model preferring the same

response, and so it would be impossible for the correct labeling principle to be extracted given

that either principle could have resulted in this labeling.

Examining Figures 5.1, 5.2, 5.3, and 5.4, we find that nearly every cluster is made up

of about 50% of each labeling principle, with little variance. In the experiments with the

"chosen minus rejected" embeddings, we find that the dataset splits are also about 50%,

supporting the hypothesis that this form of embedding does not encode the proper signal

for clustering. The "preprompted choice" embeddings do result in clustering more along the

dataset split lines, supporting the hypothesis that clustering is done via topic more strongly

than it is done via preference.

In sum, the synthetic dataset experiments revealed failures of important assumptions

that we had made. First, principles are applied to specific contexts/topics, and so blindly

randomizing the principles applied to a variety of topics results in a noisy dataset. This is

supported by the fact that two different principles can produce the same labels for a pair

of responses. This is an important problem to consider, as this is not merely a problem

with synthetic datasets. Two human labelers may also have different personal principles, yet

label samples with the same preferred response. How to extract principles in light of this is

a problem left to future work. Second, the specific choice of relabeling harmless and helpful

samples with harmless and helpful principles may not have been a good choice for producing

a good signal for determining which samples represent which principle. The "conflict of

interest" between the datasets and principles likely makes it quite difficult to produce clean

clustering along the principles.
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Chapter 7

Future Work

Despite not providing strong principle-generation capabilities, ICAI shows promise as a

framework to interpret the implicit preferences that are encoded within datasets and models.

In this chapter, we outline avenues of future work which could help mature ICAI to its full

potential. We have confidence that our work thus far has informed strong ideas regarding

future work on this framework.

We discuss three avenues for future work: clustering-based approaches (of which this

work is a variant), prompt optimization, and sparse dictionary learning.

7.1 Clustering-Based Approaches

Clustering-based approaches utilize clustering of a textual embedding in order to generate

clusters with separate semantic meanings. The primary drawbacks to the clustering that

was used in this work was:

1. The type of clustering we used was "hard" clustering. This means that once a sample

is in one cluster, it is "stuck" there, without potential future mobility. This could be

detrimental to principle generation, as a cluster could contain "noisy" samples which

cause the cluster to be labeled as having multiple principles, although it may only have
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a small minority of noisy samples which are having an outsized effect on the generated

principle.

2. The clustering we used was also top-down. This means that we took every sample from

the entire preference dataset, embedded each of them, and then clustered the whole

dataset from these embeddings. Naively, the hope was that clustering across the whole

dataset would result in the formation of principled clusters. We did often find that the

clusters fit some semantic groupings, but the grouping was almost surely based on the

topics in the prompt (i.e., the conversation transcript), not the preferences that were

represented in the chosen and rejected responses.

One way to solve the problems arising from hard clustering is to use "soft" clustering (also

known as fuzzy clustering). This is a method that assigns samples to one or more clusters,

with varying degrees of membership to each cluster. Given this soft clustering, we can then

use the cluster memberships in order to weight the importance of samples when generating

cluster principles. This could improve the problems that result from hard clustering as it is

more robust to noisy samples "infiltrating" clusters that they do not belong to semantically.

Another small but potentially powerful change is using other clustering methods, such

as HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise),

spectral clustering, and Gaussian mixture models. These other clustering methods may

prove to be better suited for clusters with non-spherical shapes which KMeans and KMedoids

struggle with.

A potential method to continue using the current top-down clustering paradigm is to

change the way that we embed the samples. In this work, we used the difference embed(p+c)-

embed(p+r) and the preprompted embed(preptompt+c+r), but this seemed to focus the

clustering on the topics in the samples rather than the principles in them. One approach to

change the embedding would be to train a reward model on the samples and use the final

layer representation from this reward model as the embedding to cluster on. This could

promote the principles within the embeddings and generate better top-down clusters.
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Perhaps the top-down method is inherently flawed. To solve this problem, a "bottom-up"

approach could be used. In a bottom-up approach, we generate one principle per sample

(e.g., examples in the template from 4.3 Principle Generation is just one example). Once

we have generated a principle for each sample, we can embed these principles and cluster

using these embeddings. Clustering, perhaps hierarchically, could result in cleaner principles

per cluster, as we are clustering on the principles of the samples instead of the samples

themselves. Similar to the reward model method discussed earlier, this approach could

provide a better "clustering signal," which could result in better clusters than those found

in this work.

Given the results of this work, the clustering-based approaches discussed show promise

as methods to potentially boost the power of the clustering groundwork that has been laid.

7.2 Prompt Optimization

Prompt optimization is a method to generate constitutions using language models directly.

This could take many forms, as there is a rich literature on prompt optimization (e.g., [18],

[22]).

The basic process would be as follows: have a language model generate principles given

samples from a dataset, validate these principles on other samples from the dataset, and use

in-context learning to prompt the model to generate updated principles. This process can

be repeated as necessary, but lacks much structure in this form. Perhaps combination with

some pre-processing (e.g., via clustering) could significantly boost performance.

7.3 Sparse Dictionary Learning

Sparse dictionary learning seeks to find a sparse linear representation of each data sample

using a minimal set of atoms which can represent all samples. This paradigm has found some

success within mechanistic interpretability (e.g., [14]), and we believe that there is potential
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for this to be applied within the ICAI context. The primary steps of sparse dictionary

learning would be as follows:

1. Generate a "basis" of principles: these are analogous to the atoms of the sparse dictio-

nary problem. These can be generated using samples from the dataset or leveraging the

power of long-context language models to generate potential principles given a large

subset of the dataset.

2. Learn how to reconstruct the preferences represented within the samples using a sparse

set of the basis principles.

3. Collect the principles which perform best and are most disjoint from one another (and

perhaps some other characteristic). These principles form the constitution for the

dataset.

The validating and collecting of principles may be a noisy process, i.e., it may be hard to

determine which principles are really doing well, and so this method is more uncertain than

the others mentioned in this chapter.
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Chapter 8

Conclusion

In this thesis, we presented Inverse Constitutional AI (ICAI), an interpretability framework

for extracting the principles governing models and datasets. Motivated by the Constitu-

tional AI (CAI) finetuning paradigm of instilling models with a constitution of principles,

we approach the inverse problem of extracting a constitution of principles from data.

The key contributions of this work are the presentation of the ICAI framework and an

approach to ICAI using a clustering-based approach. The approach involved embedding

preference pairs, clustering on these embeddings in order to group principles, generating

interpretable principles for each cluster, and validating these principles on held-out samples

from the cluster. We conducted empirical evaluation on the hh-rlhf red-teaming dataset and

a synthetic dataset relabeled using hand-written principles.

While the clustering techniques employed were able to group semantically coherent topics

and generate human-interpretable principles for these clusters, achieving fully disentangled,

principle-based clustering remained a challenge. The results highlighted the impact of em-

bedding representations and the need for alternative principle-discovering techniques tailored

to the problem of principle extraction.

Several promising directions for future work were identified, including soft clustering

approaches to mitigate the limitations of hard clustering, bottom-up principle extraction
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methods, prompt optimization techniques for principle generation, and sparse dictionary

learning frameworks. Exploring these avenues could potentially unlock the full potential of

ICAI as a powerful interpretability tool.

This thesis establishes ICAI as a novel framework for interpreting the principles under-

lying datasets and models, and took an initial step towards realizing this vision through a

clustering-based implementation on preference data. While the current work demonstrated

both successes and limitations, it paved the way for future research in this area, with the ul-

timate goal of providing a deeper understanding of the principles governing language models

and their training data.
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